
883

A model for integrating dialogue and the execution of joint
plans

Yuqing Tang
Dept. of Computer Science

Graduate Center
City University of New York

365 Fifth Avenue
New York, NY 10016, USA
ytang@gc.cuny.edu

Timothy J. Norman
Dept of Computing Science
The University of Aberdeen
Aberdeen, AB24 3UE, UK
t.j.norman@abdn.ac.uk

Simon Parsons
Dept of Comp & Info Science

Brooklyn College
City University of New York
2900 Bedford Avenue

Brooklyn, NY 11210 USA
parsons@sci.brooklyn.cuny.edu

ABSTRACT
Coming up with a plan for a team that operates in a non-deterministic
environment is a complex process, and the problem is further com-
plicated by the need for team members to communicate while the
plan is being executed. Such communication is required, for ex-
ample, to make sure that information critical to the plan is passed
in time for it to be useful. In this paper we present a model for
constructing joint plans for a team of agents that takes into account
their communication needs. The model builds on recent develop-
ments in symbolic non-deterministic planning, ideas that have not
previously been applied to this problem.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Coherence and co-ordination; multiagent systems.

General Terms
Languages, theory.

Keywords
Agent interaction, planning, dialogue.

1. INTRODUCTION
One of the fundamental problems in multiagent systems is how

to get a team of agents to coordinate their behavior. While there are
situations in which agents can do this without needing to commu-
nicate [10], in general coordination requires communication. An-
other important part of coordination is having the agents decide
what to do. Since [2], the process of deciding what to do is con-
sidered to break down into two parts — deciding what goals to
achieve, what [2] calls deliberation, and then deciding how those
goals might best be achieved, which is usually described as plan-
ning. In this paper we are interested in the planning part of the
process. We assume the existence of a set of goals to be achieved,
in a form such as a set of joint intentions [8].

We are also greatly concerned with communication. Much re-
cent work on agent communication uses argumentation-based dia-
logue [12], and the long term goal of our work is to extend exist-

Cite as: A model for integrating dialogue and the execution of joint plans,
Author(s), Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ing work on multiagent planning by developing models by which
a team of agents can, in the course of an argumentation-based di-
alogue — by which we mean a process during which agents put
forward suggested partial plans backed by reasons, as in [18] —
develop a plan for the team. We want this to be done in a way
that respects the non-deterministic nature of the world, and which
yields efficient implementation. This paper takes several steps to-
wards this goal.

In particular, this paper gives a mechanism, albeit a centralised
mechanism, by which a multiagent team can construct plans that
take into account the need to communicate to ensure that the plan is
executed correctly [13]. By developing a representation language
that is an extension of languages used in non-deterministic plan-
ning, our approach can make use of new techniques from model-
checking to provide efficient implementations. The extension in-
corporates the elements necessary to take multiple agents, and the
necessary communication, into account. The use of a symbolic
model makes it possible to turn the plan construction process into
an argumentation-based dialogue in the future.

Building our approach on top of work in planning has advan-
tages beyond ease and efficiency of implementation. By appropri-
ating the underlying formal models, we can easily acquire suitable
formal guarantees for the planning model that we construct. It is
straightforward, for example, to show that given an adequate de-
scription of the world, any plan that our planning process will con-
struct is both a feasible and, in a specific sense an optimal, way to
achieve the goals of the plan.

2. REPRESENTATION LANGUAGE
We use a state-space model as a basis for our formalisation.

This model is an adaptation of a model commonly used in non-
deterministic planning [6]. States are objects that capture some as-
pect of a system, and actions are transitions between states. States
and actions together define a state-space. When action effects are
non-deterministic [6] then what one seeks for any state-space is a
policy: i.e. a state-action mapping that specifies which actions one
should take in a given state. We define a non-deterministic domain
to be a tuple M = 〈P,S ,A,R〉 where:

• P = PS ∪ PA is a finite set of propositions;

• S ⊆ 2PS is the set of all possible states;

• A ⊆ 2PA is the finite set of actions; and

• R ⊆ S ×A× S is the state-transition relation.

Cite as: A Model for Integrating Dialogue and the Execution of Joint
Plans, Yuqing Tang, Timothy J. Norman, Simon Parsons, Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. 883–890
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

884

A propositional language L with quantification extension can be
defined by allowing standard connectives ∧,∨,→,¬ and quanti-
fiers ∃,∀ over the proposition variables. The resulting language is
a logic of quantified boolean formulae (QBF) [3]. A symbol re-
naming operation, which we use below, can be defined on L, de-
noted by L[P/P ′], which means that a new language is obtained
by substituting the symbols of P with the symbols of P ′ where P ′

contains the same set of propositions as that of P but using differ-
ent symbol names (notice that |P ′| = |P|). Similarly for a formula
ξ ∈ L, if �x is a vector of propositional variables for P , then a vari-
able renaming operation can be defined by ξ[�x/�x′] which means
that all the appearances of variables�x = x1x2 . . . xn are substituted
by �x′ = x′1x′2 . . . x′n which is a vector of the corresponding vari-
ables or constants in P ′. In QBF, propositional variables can be
universally and existentially quantified: if φ[�x] is a QBF formula
with propositional variable vector �x and xi is one of its variables,
the existential quantification of xi in φ is defined as ∃xiφ[�x] =
φ[�x][xi/FALSE] ∨ φ[�x][xi/TRUE]; the universal quantification of
xi in φ is defined as ∀xiφ[x] = φ[�x][xi/FALSE] ∧ φ[�x][xi/TRUE].
Here FALSE and TRUE are two propositional constants represent-
ing “true” and “false” in the logic. The introduction of quantifi-
cation doesn’t increase the expressive power of propositional logic
but allows us to write concise expressions whose quantification-
free versions have exponential sizes [9].

Based on the two disjoint sets of propositions, PS and PA, two
sub-languages LS and LA for states and actions can be defined re-
spectively. A state s = {p1, p2, . . . , pk}, s ⊆ PS, means that the
propositions p1, p2, . . . , pk are true in state s and all other propo-
sitions in PS are false — we therefore make some form of closed-
world assumption. In other words, each state s is explicitly encoded
by a conjunction composed of all proposition symbols in PS in ei-
ther positive or negative form

ψ =
^

pi∈s

pi ∧
^

pj �∈s and s∈PS

¬pj

We denote that a formula γ is true in state s by s |= γ. Then a set
of states can be characterized by a formula γ ∈ LS, with the set
denoted by S(γ), where S(γ) = {s|s |= γ}.1 Actions are encoded
in a similar way to states. Action a = {p1, p2, . . . , pl}, a ⊆ PA
means that propositions p1, . . . , pl are true and all other formula
in PA are false. We denote that a formula α is true in an action a
by a |= α, and a set of actions can be characterized by a formula
α ∈ LA with the set denoted by A(α) = {a|a |= α}. Given a set
of states S, and a set of actions A, the corresponding formulae in L
are denoted by ξ(S) and ξ(A) respectively. With these notions we
can have a mapping between the set operations on states and the
boolean operations on formulae as shown in Table 1 when X1 and
X2 are interpreted as two sets of states. Similarly for actions, we
can have the same operation mapping in Table 1 when X1 and X2

are interpreted as two sets of actions.
With states and actions defined, the state-transition relationship

can then be specified by a set SR of triples: SR = {〈γ, α, γ′〉}
where γ, γ′ ∈ LS and a ∈ LA. Each triple 〈γ, α, γ′〉 corresponds
to a transition R〈γ,a,γ′〉 = {〈s, a, s′〉|s |= γ, a |= α, s′ |= γ}, and
together:

RSR =
[

〈γ,α,γ′〉∈SR

R〈γ,α,γ′〉.

Using the renaming operation, we can extend the state and action
1Note that S(p1 ∧ p2 ∧ . . . ∧ pk) �= {s} where s = {p1, p2, . . . , pk} because Sγ

doesn’t make the closed world assumption; that is, we don’t assume that the unspec-
ified propositions are false when using a formula γ ∈ L to specify the set of states
S(γ).

Set operator QBF operator
X1 ∩ X2 ξ(X1) ∧ ξ(X2)
X1 ∪ X2 ξ(X1) ∨ ξ(X2)
X1 \ X2 ξ(X1) ∧ ¬ξ(X2)
x ∈ X ξ(x) → ξ(X)
X1 ⊆ X2 ξ(X1) → ξ(X2)

Table 1: The mapping between set operators and QBF opera-
tors

language L = LS ∪ LA to be L = LS ∪ LA ∪ LS′ where LS′ =
LS[P/P ′]. PS is for the current state, PA is for the action, and
PS′ is for the next state in the representation of a state transition.
Now a triple 〈γ, α, γ′〉 can be rewritten by one formula in L as
γ ∧α∧ γ′ where γ ∈ LS, α ∈ LA and γ′ ∈ LS′ . Correspondingly,
a state transition r = 〈s, a, s′〉 is said to satisfy a formula δ =
γ ∧ α ∧ γ′, denoted by r |= δ, if s |= γ, and a |= a, and s′ |=
γ′. A set of state transitions R can be characterized by a formulae
δ = ξ(R) and the corresponding set of state transitions R(δ) =
{r|r |= δ}. We can capture the meaning of δ more easily if we
expand δ into a disjunction, δ =

W

i(γi ∧ αi ∧ γ′
i), in which each

state transition is explicitly encoded as a conjunction. It conforms
to the mapping between the set operations on state transitions and
boolean operations on the formulae in Table 1 by interpreting X1

and X2 with two sets of state transitions.

3. POLICIES
The state-space model described above gives us a way of de-

scribing the world in which an agent finds itself, and the actions it
can undertake. We can then turn to considering what the output of
the planning process will be. We call this output a policy, and we
consider it to simply be a set of state-action pairs,

π = {〈si, ai〉}

where si ∈ S and ai ∈ A(s) with

A(s) = {a|∃〈s, a, s′〉 ∈ R}

that is the set of actions that are applicable in s. A policy π is a
deterministic policy, if for a given state s, there is no more than one
action is specified by π, otherwise it is a non-deterministic policy.
What we are calling a policy is the state-action table used in [6]. It
is also related to what the literature on MDPs calls a policy [1], but
we allow a policy to only specify actions for a subset of all possible
states.

A policy can be specified by a set of pairs composed of a formula,
γ ∈ LS, and an action, α ∈ LA: SA = {〈γ, α〉}. Each pair 〈γ,α〉
corresponds to a policy segment: π〈γ,α〉 = {〈s, a〉|s |= γ and a |=
α}, and together

πSA =
[

〈γ,α〉∈SA

π〈γ,α〉

A state-action pair 〈s, a〉 is said to satisfy a formula of the form
γ ∧ α where γ ∈ LS and α ∈ LA, denoted by 〈s, a〉 |= γ ∧ α. We
can characterize a set π of state-action pairs, namely a policy, by a
formula of the form τ =

W

i γi ∧ αi and its equivalents. We denote
this by π(τ) = {〈s, a〉|〈s, a〉 |= τ}. In the same way that we rep-
resent state transitions as propositions, we can have a propositional
representation ξ(SA) for a set SA of state-action pairs, and the map-
ping between the set operations on policies and boolean operations
on the formulae given in Table 1 applies if we interpret X1 and X2

as two sets of state-action pairs. We can represent the constraint
A(s) by a formula in L: ξ(A(S(γ)) = ∃�x′ξ(R(S, A, S′))∧γ where

Yuqing Tang, Timothy J. Norman, Simon Parsons • A Model for Integrating Dialogue and the Execution of Joint Plans

885

�x′ is the vector of variables for S′ and ξ(R(S, A, S′)) is the formula
representation of the state transition relation in the system. Then
we can conjoin the formula ξ(A(S(γ))) to each policy expression
of the form γ ∧ α to be γ ∧ α ∧ ξ(A(S(γ))). For simplicity, we
will omit the formula component ξ(A(S(γ))) in the representation
of policy below.

The space of all policies is denoted by Π. The set of states in a
policy π is Sπ = {s|〈s, a〉 ∈ π}. Adapting from [6], we have the
following definition:

Definition 1. An execution structure induced by the policy π
from a set of initial states I is a directed graph Σπ(I) = (Vπ, Eπ)
which can be recursively defined as

• if s ∈ I, then s ∈ Vπ, and

• if s ∈ Vπ and there exists a state-action pair 〈s, a〉 ∈ π such
that 〈s, a, s′〉 ∈ R, then s′ ∈ Vπ and a : 〈s, s′〉 ∈ Eπ where
the action a is the label of the edge.

Definition 2. An execution path of a policy π from a set of states
I is a possibly infinite sequence s0, s1, s2, . . . of states in the exe-
cution structure Σπ(I) = 〈Vπ, Eπ〉 such that for all states si in the
sequence:

• either si is the last state of the sequence, in which case si is a
terminal state of Σπ(I), or

• 〈si, si+1〉 ∈ Eπ .

A state s′ is said to be reachable from s in the execution structure
Σπ if there is a path from s to s′ in Σπ . Σπ is an acyclic execution
iff all its execution paths are finite.

These ideas then give us a way to classify policies:

Definition 3. Given a set of initial states I and a set of goal states
G for a nondeterministic domain M = 〈P,S ,A,R〉, let π be a
policy for M with execution structure Σπ(I), then

• π is a weak solution to achieve G iff for any state s0 ∈ I there
is some terminal state s′ of Σπ(I) such that s′ ∈ G and it is
reachable from s0;

• π is a strong solution to achieve G iff Σπ(I) is acyclic and
all terminal states of Σπ(I) are also in G;

• π is a strong cyclic solution to achieve G iff from any state
s0 in Σπ(I) some terminal state s is reachable and all the
terminate states of Σπ(I) are in G.

With a weak solution policy, we have a path to the goal in a fi-
nite number of steps, but no guarantee that in a non-deterministic
world the goal will be achieved; with a strong solution policy, we
have a guarantee that the goal can be achieved in a finite number
of steps despite actions being non-deterministic if the state space is
acyclic; and with a strong cyclic solution, we are guaranteed that
the goal will be achieved even in the face of non-determinism and
cycles in the state-space so long as the cycle can be broken non-
deterministically.

4. JOINT POLICIES
To describe the behavior of a team, we need to prescribe more

structure over the actions available to an agent. We assume that
there is a set of n agents labeled by T = {T1, T2, . . . , Tn} in the
system. We call the actions in the set A joint actions of these
agents. Each action a ∈ A is a tuple of actions of individual agents,

Representation Meaning
joint(ai) {a ∈ A|a |= ai}
joint(�a)

T

ak∈a joint(ak)

joint(si) {s ∈ S|s |= si}
joint(�s)

T

sk∈�s joint(sk)

joint(Ri) {〈s, a, s′〉 | 〈si, ai, s′i〉 ∈ Ri, and s ∈
joint(si), a ∈ joint(ai), s′ ∈ joint(s′i)〉}

joint(πi) {〈s, a〉 | 〈si, ai〉 ∈ πi, and s ∈ joint(si), a ∈
joint(ai)〉}

joint(Si)
S

si∈Si
joint(si)

joint({〈si, s′i〉}) {〈joint(si), joint(s′i)〉}
joint(Σπi) 〈joint(Vπi), joint(Eπi)〉

joint({Ri})
\

i

joint(Ri)

joint({πi})
\

i

joint(πi)

Table 2: Joint operations

Representation Meaning
proji(a) {ai ∈ Ai|a |= ai}
proji(s) {si ∈ Si|s |= si}
proji(R) {〈si, ai, s′i〉 | 〈s, a, s′〉 ∈ R, and si ∈

proji(s), ai ∈ proji(a), s′ ∈ proji(s′)〉}
proji(π) {〈si, ai〉 | 〈s, a〉 ∈ π, and si ∈ proji(s), ai ∈

proji(a)〉}
proji(S)

S

sk∈S proji(sk)

proji({〈s, s′〉})
S

sk∈S{〈proji(s), proji(s′)〉}
proji(Σπi) 〈proji(Vπi), proji(Eπi)〉

Table 3: Projection operations

so a = [a1, . . . , an]. That is each action a ∈ A can be further de-
composed into n actions ai ∈ Ai of individual agents Ti. Each Ai
is defined to be a subset PAi of the propositions in PA. By over-
loading the notion, we also denote a |= ai if agent Ti’s action is ai
in a joint action a. In total, we have:

A =
Y

i

Ai

Similarly, each state s ∈ S is a tuple of states combined from the
perception of individual agents, so s = [s1, . . . , sn]. That is each
state s ∈ S can be further decomposed into n states si ∈ Si of
individual agents Ti. Each Si is defined to be a subset PSi of the
propositions in PS . By overloading this notion, we also denote
s |= si if agent Ti’s perception of a (joint) state s is si in.

Overall, we have:

S =
Y

i

Si

Given these ideas, we can generate the set of join(t) and projection
operations on an agent Ti’s actions, states and state transitions as
shown in Tables 2 and 3 respectively. Joint operations combina-
tions the states and actions that concern individual agents into the
states and actions that concern a set of agents, while projection op-
erations extract states and actions of individual agents from those
of a set of agents.

An additional formula β ∈ L can be introduced to constrain
possible combinations so that A(β) = {a ∈ A|a |= β}. For

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

886

example, this constraint:

β =

n̂

i=1

^

j �=i

ai → τj

where τj is a special symbol for an empty action, captures a sit-
uation in which agents are not allowed to carry out actions con-
currently. The corresponding constrained joint state transition rela-
tionship is:

joint({Ri}, β) = {〈s, a, s′〉 | 〈s, a, s′〉 ∈ joint({Ri}),
and a |= β, s |= β〉}

and the corresponding constrained joint policy is:

joint({πi}, β) = {〈s, a, s′〉|〈s, a〉 ∈ joint({πi}),
and a |= β, s |= β〉}

It is should be noted that in practice we need to be careful exactly
how we specify formulae like the constraint β since they can ad-
versely affect the complexity of reducing the the formulae into a
form in which they can be fed into the BDD implementation. We
will discuss this briefly in Section 8.

5. POLICY AND COMMUNICATION
At this point we have a language that is sufficiently rich to con-

struct plans that just involve the physical actions that agents carry
out. However, we want to create plans that include communications
that permit the necessary sharing of information, so we need to add
a dialogue model to the model we already have. As the basis of the
dialogue model, we will use the same kind of state space model as
we use for the world model. To distinguish the two state transition
models, we will denote these two models and their elements with
subscripts. We write |D to denote elements of the dialogue model,
for example, M|D denotes the state transition model for a dialogue
and S|D denotes the states of a dialogue. We write |W to denote el-
ements of the world model, for example, M|W denotes the external
world model and S|W the states of the world. However, when the
state transition model is obvious from the context, we will omit the
subscripts.

As before, we assume that, in the dialogue, there is a set of n
agents labeled T1, T2, . . . , Tn where each agent Ti has a model of
the world Mi|W = 〈Pi|W ,Si|W ,Ai|W ,Ri|W〉 and for which it has a
policy πi|W = {〈si, ai〉}. Given this, a dialogue model is then a state
transition system M|D = 〈P|D,S|D,A|D,R|D〉 for which there is
a policy for conducting dialogues π|D. The dialogue language P|D
contains elements from language Pi|W that individual agents use to
describe the world, along with auxiliary language elements such
as a proposition to mark the differences between two world states.
The dialogue information is induced from PD. The set of dialogue
acts A|D are those available to the agents. How these dialogues
change the information state will be specified by the dialogue state
transition relationship of these dialogue acts: R|D ⊆ S|D ×A|D ×
S|D. Depending on the specific dialogue, we may distinguish a set
of initial dialogue states I|D ⊆ S|D and a set of goal dialogue states
G|D ⊆ S|D (see [14] for an example).

Definition 4. Agent Ti’s behavior model is a joint model of its
external world 〈Mi|W , πi|W〉 and its dialogue model 〈Mi, πi〉 =
〈Mi|D, πi|D〉 defined as:

〈Mi, πi〉 = 〈joint(Mi|W ,Mi|D), joint(πi|W , πi|D)〉.

The whole system behavior model is joint{Ti}({〈Mi, πi〉}).
As before, a policy for a dialogue, π|D = {〈s|D, a|D〉}, speci-

fies what dialogue action should be taken in a given dialogue state

EXEC(s, a) = {s′|〈s, a, s′〉 ∈ R}

StatesOf (π) = {s|〈s, a〉 ∈ π}

GetAction(s, π) = {a|〈s, a〉 ∈ π}

ComputeWeakPreImage(S) = {〈s, a〉|Exec(s, a) ∧ S �= ∅}

ComputeStrongPreImage(S) = {〈s, a〉|∅ �= Exec(s, a) ⊆ S}
ComputeNextImage(S) = {s′|Exec(s, a) ∧ S}

PrunStates(π, S) = {〈s, a〉 ∈ π|s �∈ S}

Figure 1: Operations on transition relations and policies

Set representation QBF implementation
EXEC(s,a) ξ(s) ∧ ξ(a) ∧ ξ(R)[�x′/�x]
StatesOf (π) ∃�aξ(π)
GetAction(s, π) ξ(s) ∧ ξ(π)
ComputeWeakPreImage(S) ∃�x′ξ(S)[�x/�x′] ∧ ξ(R)
ComputeStrongPreImage(S) ∀�x′(ξ(R) → ξ(S)[�x/�x′]) ∧

∃�x′ξ(R)
ComputeNextImage(S) ∃�xξ(S) ∧ ξ(R)
PrunStates(π, S) ξ(π) ∧ ¬ξ(S)

Table 4: The mapping between set representation and QBF im-
plementation of some transition relation and policy functions

to reach the goal states G|D from the initial states I|D at the least
expected cost. To distinguish such policies from the policies that
govern an agent’s actions in the world, we call the policies that
govern an agent’s actions in a dialogue a conversation policy and a
policy that governs an agent’s actions in the world a world policy.

Before we go on to give the description of the algorithm for ex-
ecuting world and conversation policies, we need to take a look at
some properties that capture the interaction between the execution
of actions in the world and communication between team members.

Definition 5.

• A state-action pair 〈s, a〉 ∈ π|W is called totally autonomous,
if for every agent Ti there is no other 〈s′i , a′

i 〉 ∈ proji(π|W)
such that 〈si, ai〉 ∈ proji(〈s, a〉), and si = s′i but ai �= a′

i .
In other words, action-state pairs are totally autonomous if
for every agent involved there is no confusion about which
action it should take. A team policy π|W is called totally
autonomous if all its constituent joint state-action pairs are
totally autonomous. In this case, an individual agent can
choose what it should do based only on local information
about the world.

• A state-action pair 〈s, a〉 ∈ π|W is called state communica-
tion sufficient, if there is no other state-action pair 〈s′, a′〉 ∈
π|W such that s = s′ but a �= a′. A team policy π|W is called a
state communication sufficient if all its joint state-action pairs
are state communication sufficient (making it equivalent to a
deterministic joint policy). In this case, each individual agent
can choose correctly what it should do based only on knowl-
edge of the global state.

• A state-action pair 〈s, a〉 ∈ π|W is called a state and action
communication sufficient, if there is another 〈s′, a′〉 ∈ π|W
such that 〈s′, a′〉 ∈ π|W such that s = s′ but a �= a′. A team
policy π|W is called state and action communication suffi-
cient if some of its joint state-action pairs are state and ac-
tion communication sufficient (making it equivalent to a non-

Yuqing Tang, Timothy J. Norman, Simon Parsons • A Model for Integrating Dialogue and the Execution of Joint Plans

887

Algorithm 5.1 Execution of world and conversation policies
1: procedure ExecPolicy(M|W , π|W ,M|D, π|D) {

(1)M|W : Joint external world model ,
(2) π|W : Joint external world policy ,
(3)M|D: Joint dialogue model ,
(4) π|D: Joint dialogue policy }

2: Mi|W ← proji(M|W)

3: πi|W ← proji(π|W)

4: Mi|D ← proji(M|D)

5: πi|D ← proji(π|D)

6: si|W ← SenseCurrentState()
7: si|D ← ReceiveCommunication() ∧ ComputeDialState(si|W ∧ πi|W)

8: while si|W ∈ StatesOf (πi|W) ∨ si|D ∈ StatesOf (πi|D) do
9: if |joint(GetAction(si|W , πi|W))| > 1 then

10: WorldSA← ComputeJointSA(si|D)

11: if |WorldSA| = 1 then
12: ai|W ← proji(GetAction(WorldSA))

13: Execute(ai|W)

14: else
15: ai|D ← GetAction(si|D , πi|D)

16: if ai|D �= ∅ then
17: Execute(ai|D) {Communicate to resolve the ambiguity

about which action to select}
18: else
19: WorldSA ← RetrieveExternalDecision(WolrdSA) {Com-

munication cannot help, ask for external decision}
20: si|D ← ComputeDialState(WorldSA){Update the external

decision into the information state}
21: end if
22: end if
23: else
24: ai|W ← GetAction(si|W , πi|W)

25: Execute(ai|W)

26: end if
27: si|W ← SenseCurrentState()
28: si|D ← ReceiveCommunication()∧ComputeDialState(si|W ∧πi|W)

29: end while
30: end procedure

deterministic joint policy). In this case, individual agents
need to decide what to do during policy execution by picking
among the set of all possible actions given by the joint pol-
icy, and need to communicate with one another to come to a
decision.

• A policy π is called a out of usage in a state s if there is no
〈s, a〉 ∈ π. In this case, agents need to replan.

A procedure to execute a combined world policy and conver-
sation policy is given in Algorithm 5.1. It is adapted from the
corresponding procedure in [6] and with the addition of steps to
execute the conversation policy. It uses the transition operations
defined in Figure 1 and assumes that the these operators, as well
as the joint and proji operations, operate on the world and the dia-
logue transition model according to the symbols |W and |D respec-
tively. ComputeDialState, ComputeJointSA and RetrieveExternal
Decision are application dependent, and define how the dialogue is
related to the external world model, as in Section 6. In essence the
procedure steps through the world policy, executing the steps of a
communication policy when communication is required.

6. GENERATING POLICIES
Given the general model of dialogue defined in Section 5, we

can define a specific conversation policy which will ensure that the
correct information is exchanged during world policy execution. In

this section we describe an algorithm for generating policies that
combine world policies and conversation policies.

We start by assuming that each agent Ti maintains a model of the
external world Mi|W and its finite propositional language Pi|W will
depend on the application. Ti’s dialogue model Mi|D is based on a
propositional language

Pi,S|D = PS|W ∪ PA|W ∪ PAL ∪ PCM

where PAL contains a boolean variable for every variable in PS|W ∪
PA|W to indicate its validity in dialogue state, PCM contains a bool-
ean variable for every variable in PSi|W ∪ PAi|W of the agent Ti’s
(the information Ti can effectively known) to indicate whether its
value has been communicated in dialogue state, j = 1 . . . N and N
is the number of agents in the system, and

Pi,A|D = {tell(i, j, xk, v)}

where j = 1 . . . N, xk ∈ Pi|W and v = {0, 1}. tell(i, j, xk, v) means
that Ti tells Tj that the boolean variable xk representing some bit
of the state and action information is in the value v. We denote
variables in PSi|D by xi,j,k, lxi,j,k and cxi,j,k for Ti’s information
about Tj on state variable k, about its validity and whether it has
been communicated to Tj, and those in PAi|D by yi,j,l, lyi,j,l and
cyi,j,l for Ti’s information about Tj on action variable l, its validity
and whether it has been communicated to Tj where j = 1, . . . , N,
k = 1 . . . K = |PSj | and l = 1 . . . L = |PAj |. In total, we have
3N ∗ N ∗ (K + L) variables for the dialogue system of the whole
team2.

The mapping between agent Ti’s current state and its information
state in the dialogue can be described by a β (connection) condi-
tions. For example,

β(si|W , si|D) =
N̂

j=1

K̂

k=1

[vxi,j,k → (xi,j,k ↔ x′i,j,k)]

where xi,i,k ∈ PSi|W and x′i,i,k ∈ Pi|D. More complex mappings
can be defined using representation languages such as a restricted
linear time logic or a computation tree logic, representations that
are used in the symbolic model checking literature [4].

Similarly, there is a mapping between agent Ti’s next action de-
cision and its information state in the dialogue. This mapping can
be described by the β condition, for example,

β(ai|W , si|D) =
N̂

j=1

L̂

l=1

[vxi,j,l → (yi,j,l ↔ y′i,j,l)]

where yi,i,l ∈ PAi|W and y′i,i,l ∈ Pi|D. Please notice that the above
two β conditions depends on the validity variables in the dialogue
information states. These validity variables will be initialized by

ν0(si|D) =

K̂

k=1

[vxi,i,k] ∧
L̂

l=1

[vyi,i,l].

As shown in the dialogue state transitions below, the value of these
validity variables will also been changed by the dialogue acts.

Using the mappings of states and actions, we can compute a set
of initial dialogue states — those that exist before taking into ac-
count the effects of any communication — from the fragments of
world policy that individual agents possess:

ComputeDialState(WorldSA) = ∃�x∈P|W [WorldSA∧
VN

i [β(si|w, si,d) ∧ β(ai|w, si|D) ∧ ν0(si|D)]
˜

,
2This can be improved by encoding the indices of xi,j,k and yi,j,l with logN + logN +
logK + logL boolean variables, and maintain the information using a relation to map
these indices to the values they correspond to.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

888

Algorithm 6.1 Dialogue goal computation
1: function ComputeDialGoal(NewWorldSA) {

(1) NewWorldSA: A new external policy segment,
(2) IJMAP: The global variable holding the dialogue states to world
joint states mapping
}

2: Set ComputeNextImage to use RD
3: NewDialS ← ComputeDialState(NewWorldSA)
4: repeat
5: DialS ← NewDialS
6: NewDialS ← ComputeNextImage(DialS)
7: DJMAP← ComputeDJMAP(NewDialS, NewWorldSA)
8: until DialS = NewDialS ∨ GoodExe(DJMAP)
9: return NewDialS

10: end function

We can also compute a mapping, denoted by DJMAP, between the
dialogue states and the corresponding fragments of world policy:

ComputeDJMAP(DialS, NewWorldSA) =
ˆ

DialS ∧ NewWorldSA ∧
VN

i [β(si|w, si,d) ∧ β(ai|w, si|D)]
˜

and conversely we ca compute a joint external world state and its
policy action out of a dialogue state using the DJMAP mapping:

ComputeJointSA(si|D) = ∃�x∈P|D∪
S

j Pj �=i|W

ˆ

si|D ∧ DJMAP
˜

The set of dialogue state transitions associated with Ai|D is:

Ri|D = {〈xi,i,k = v ∧ cxi,j,k = 0, tell(i, j, xk, v),
xj,i,k = v ∧ cxi,j,k = 1 ∧ vxi,j,k = 1〉,

〈yi,i,l = v ∧ cyi,j,l = 0, tell(i, j, yl, v),
yj,i,k = v ∧ cyi,j,k = 1 ∧ vyi,j,k = 1〉}

For now, we assume that the execution of communication actions
will be much faster than that of actions in the external world —
for example assuming that communication is carried out on a high
speed network while external actions are carried out under the usual
limitations of the physical world. This assumptions enables us to be
sure that agents can always carry out the necessary communication
before performing the external world actions that required the com-
munication. This assumption can be relaxed, however, by adding
variables that capture temporal information. This consideration is
a topic for our future research.

By adding communication conditions to the nondeterministic pl-
anning algorithms proposed in [6], we obtain the communication-
aware policy planning algorithm of Algorithm 6.2. In the algo-
rithm, I will be set to the initial states which the team of agents
will start with, and G will be set to the goal states which the team
is intended to end up with, and ComputePreImage can be either
ComputeWeakPreImage or ComputeStrongPreImage defined in Fig-
ure 1 in Section 2, corresponding to the weak and strong solution
concepts respectively. Strong acyclic solutions can be similarly
constructed following the approaches used in [6] but omitted here
for lack of space.

As for dialogue policy synthesis, the set of initial dialogue states
can be computed using ComputeDialState from the set of the new
world policy segments, NewSA, and the set of dialogue goal states
can be computed using the function ComputeDialGoal are defined
in Algorithm 6.1 where the function good for execution is defined
as:

GoodExec(DJMAP) = [IJMAP ∧ IJMAP[�x,�y/�x′,�y′]∧
VN

i

h

(¬
V

xi∈P|W
(xi ↔ x′i)) ∧ (

V

yi∈P|D
(yi ↔ y′i))

ii

↔ FALSE

which means that the DJMAP has evolved into a mapping table in

Algorithm 6.2 World policy generation
1: function ComputeWorldPolicy(I, G, ComputePreImage) {

(1) I: Initial states,
(2) G: Goal states,
(3) ComputePreImage : A pre-image function }

2: DJMAP← ∅
3: OldSA← Fail
4: SA← ∅
5: SAD ← ∅
6: while OldSA �= SA ∧ I �⊆ (G ∪ StatesOf (SA)) do
7: PreImage← ComputePreImage(G ∪ StatesOf (SA))
8: NewSA← PruneStates(PreImage, G ∪ StatesOf (SA))
9: if ∃i|joint(GetAction(proji (NewSA)))| > 1 then

10: ID ← ComputeDialState(NewSA)
11: GD ← ComputeDialGoal(NewSA)
12: NewSAD ← ComputePolicy(ID , GD,RD, ComputePreImage)
13: if NewSAD = ∅ then
14: return Fail
15: end if
16: SAD ← SAD ∪ NewSAD
17: end if
18: OldSA← SA ∪ NewSA
19: end while
20: if I ⊆ (G ∪ StatesOf (SA)) then
21: return 〈SA, SAD〉
22: else
23: return Fail
24: end if
25: end function

Algorithm 6.3 General policy generation
1: function ComputePolicy(I, G, ComputePreImage) { (1) I: Ini-

tial states,
(2) G: Goal states,
(3) ComputePreImage : A pre-image function }

2: OldSA← Fail
3: SA← ∅
4: while OldSA �= SA ∧ I �⊆ (G ∪ StatesOf (SA)) do
5: PreImage← ComputePreImage(G ∪ StatesOf (SA))
6: SA← PruneStates(PreImage, G ∪ StatesOf (SA))
7: OldSA← SA ∪ SA
8: end while
9: if I ⊆ (G ∪ StatesOf (SA)) then

10: return SA
11: else
12: return Fail
13: end if
14: end function

which different joint world policy items won’t be mapped into one
dialogue state. The DJMAP table with this GoodExec property can
be used by every agent with ComputeJointSA to obtain an unique
external state-action pair. However, ComputeDialGoal may return
a goal dialogue state without satisfying GoodExec property. This
means that the external policy is non-deterministic, and need an
external decision maker to choose an action.

PROPOSITION 1 (CORRECTNESS). If Algorithm 6.2 returns
a policy π, then π is a weak or a strong solution to achieve the
goals G from initial states I. If the algorithm returns FAIL, then
there is no weak or strong solution.

PROOF. The algorithm does a backward breadth first search from
the goal states with respect to the ComputePreImage being set to
weak pre-image or strong pre-image function. There is an addi-
tional step of computing dialogue policy to combine information
from different agents to determine the current state and additional
action decision so that every agent can determine the next action
uniquely. The correctness of the policy computation can be found

Yuqing Tang, Timothy J. Norman, Simon Parsons • A Model for Integrating Dialogue and the Execution of Joint Plans

889

A

H

JW

C

B

D

Figure 2: An NGO team task

in work on non-deterministic planning [6]. If the procedure failed,
either there is no weak or strong solution to the joint transition
model or the dialogue policy synthesis failed. The dialogue pol-
icy synthesis is guaranteed to succeed, because in worst case the
joint state and additional decision of joint action is fully communi-
cated, and the application of PruneStates in Algorithm 6.2 and the
way in which the dialogue states and DJMAP are constructed in Al-
gorithm 6.1 guarantees that no two dialogue states will be the same
in the dialogue policy so we avoid conflicting dialogue action pre-
scriptions. Therefore if the procedure to construct a solution fails,
it is because there is no weak or strong solution.

7. AN EXAMPLE
Consider the following example, based on the example in [5].

Two agents, one representing an NGO (N) and one representing
a peace keeping force (F), are working in a conflict zone. The
agents (and the organizations they represent) work independently
and have different agenda. N is based at A in Figure 2. F is based
at point H. N’s goal is to reach D to help the villagers there. F’s
goal is keeping the peace in general in the area, but it also has
to protect N while N is carrying out its work. At any time, with
some probability, some disruption may flare up at W. If it happens,
only F has the surveillence data to know this is happening, and
F must go to W to suppress the disturbance. The routes between
different points are shown as arcs in Figure 2. N cannot traverse
the routes (J, W), (W, C), (W, B), when there is a disturbance at
W, and it is only able to traverse (C, D) and (B, D) without harm
when it is accompanied by F. N can traverse the rest of the routes
independently and F can traverse any route. The goal of the agents
is to have N reach D and to have F put down the conflict in W if it
happens.

We can formalise this as PSN = {lN,L} ∪ {health}, PSF =
{lF,L} ∪ {war}, PAN = {stayN , move(N, L′, L′′)}, and PAF =
{move(F, L1, L2) where L, L′, L′′ ∈ {A, H, J, W, B, C, D}, conflict
means that there is a disturbance in point W, and health means that
N is not harmed.

Initially, I = lN,A ∧ lF,H ∧ health ∧ (conflict ∨ ¬conflict). The
goal G = lN,D ∧ ¬conflict ∧ health. The joint transition model R
for the scenarios is as follows

Rmove

= 〈lF,x ∧ lN,y, move(F, x, x′) ∧ move(N, y, y′), l′F,x′ ∧ l′N,y′〉

Rstay

= 〈TRUE, stayN , TRUE〉}
Rhealth

= 〈TRUE,¬[move(F, B, D)] ∧ move(N, B, D),¬health〉,
〈TRUE,¬[move(F, C, D)] ∧ move(N, C, D),¬health〉,

We have additional conditions βw and βagent,route:

βw = lF,W → ¬conflict

βF,route =
^

(x,x′)∈Route

[lF,x ∧ l′F,x′]

βN,route =
^

(x,x′)∈Route\{(J,W),(W,C),(W,B)}

[lN,x ∧ l′N,x′]

where Route is the directed graph of the routes showed in Figure 2.
Overall,

R = Raction ∧Rstay ∧Rhealth ∧ βw ∧ βF,route ∧ βN,route.

Algorithm 6.2 will generate the necessary individual world and
dialogue policies. Started backward from the set G of goal states,
although G does specify only F’s location, but the system only al-
lows N to travel to the destination D if it is accompanied by F, and
no route is available from D back to W. This indicates that, at the
end, F must also be in D. Therefore from the desired goal states,
the backward chaining search will trace back to the state where ei-
ther both F and N are in C or both are in B. Rolling back from
these two joint states, if there is conflict in W, F must come from
W where it can resolve the conflict; otherwise, F can come from
either W or J. As for N, no matter whether it is in C or B, it must
come from J. Therefore if there is no conflict at W, the algorithm
will force F come directly from J (because PruneStates will prune
the longer paths). However, when F and N are in both at J (with a
conflict at W), the algorithm will produce two valid joint actions:
either both going to C or both going to B. Here let’s assume one of
them, for example F, seeks an external decision to decide the next
step, say the result is going to B, then it must communicate the de-
cision with N, so that they can both go to B to guarantee a chance
of success. If there is conflict in W, F will go to W to resolve it,
while N will reach B. As N and F don’t know each other’s posi-
tions, although they have a valid joint plan, they must communicate
with each other so that N knows it will need to stay in B and wait
for F to come, and F will know it will need to go to B instead of C.
The same kind of communication about positions will be needed
for all other locations except at A and B where they can decide by
themselves to go to J without needing to communicate with each
other.

8. THE BDD IMPLEMENTATION
In the above, we have showed the natural connections between

set paradigm on state transitions and its implicit representation us-
ing QBF formulae. There is a data structure called a Binary Deci-
sion Diagram (BDD) [3] that represents QBF formulae and makes
it possible to perform efficient operations over them. A BDD is a
rooted directed acyclic graph used to encode the set of truth assign-
ments to a QBF. BDDs guarantee that the basic boolean operations
on QBFs can be computed in quadratic time [3, 9] as summarized
in in Table 5. The intuition behind this efficiency is that BDD rep-
resentation is actually a form of minimal description of the infor-
mation encoded — the BDD for a QBF is actually the minimum
automaton that accepts the corresponding set of truth assignments
with respect to a specific variable ordering [4], and this minimality
can be preserved across the basic boolean operations.

9. CONCLUSIONS
This paper has presented a model of individual and joint action,

suitable for describing the behavior of a multiagent team, includ-
ing communication actions. The model is symbolic, and capable
of handling non-deterministic actions. In addition to the model, we

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

890

QBF/Set operator BDD operator Complexity
¬ξ ¬G(ξ) O(||ξ||)
∃xi(ξ) G(ξxi=0) ∨ G(ξxi=1) O(||ξ||2)
∀xi(ξ) G(ξxi=0) ∧ G(ξxi=1) O(||ξ||2)
ξ1 ∧ ξ2 G(ξ1) ∧ G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 ∨ ξ2 G(ξ1) ∨ G(ξ2) O(||ξ1|| · ||ξ2||)
ξ1 → ξ2 G(ξ1) → G(ξ2) O(||ξ1|| · ||ξ2||)
|X| = 1 Sat-one(G(ξ(X))) O(|�x|)

Table 5: The mapping between QBF operators and BDD op-
erators. ξ, ξ1, ξ2 are formulae in QBF; G(ξ), G(ξ1), G(ξ2) are
BDD representations for these formulae; || · || is the number of
nodes used in the BDDs.

have provided procedures for creating joint plans, plans that include
the communication necessary for plan execution — that is the de-
tection and communication of information relevant to the execution
of the plan. We believe this is the first time that this kind of plan-
ning model, drawn from the literature of non-deterministic plan-
ning, has been combined with a communication model and then
applied to multiagent teams.

As discussed by [16], teamwork requires requires the establish-
ment of joint intentions and the determination of which goals to
achieve, the creation of a plan, the sharing of knowledge about the
environment in which the team is operating, and the ability to mon-
itor plan execution. While we do not claim that what we have de-
scribed in this paper is a comprehensive model of teamwork — it
is much less powerful and comprehensive than Teamcore [17] or
Retsina [15], for example — it marks a useful step towards our
overall goal of constructing a model of argumentation-based dia-
logue that can support many of the important aspects of teamwork.
In particular, it deals with planning, albeit in a centralised way, the
sharing of information,and a limited form of plan monitoring.

One obvious area of future work is moving from a centralised
planning process, which just hands every agent a policy that will
help the team achieve its goals, to a decentralised process in which
agents can engage in a discussion of the best plan. For that we plan
to combine our prior work on argumentation-based planning [18],
which assumes a simple, deteministic model of actions, with the
work we have described here. Another area of future work, which
addresses the main area in which our model falls short of a model
of teamwork, is to consider the formation of joint intentions. Here
there is a rich vein of work to draw on, for instance [7, 11], and we
will seek to incorporate this into our model.

Acknowledgments
Research was sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and conclu-
sions contained in this document are those of the author(s) and
should not be interpreted as representing the official policies, ei-
ther expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to re-
produce and distribute reprints for Government purposes notwith-
standing any copyright notation hereon.

10. REFERENCES
[1] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic

planning: Structural assumptions and computational
leverage. Journal of Artificial Intelligence Research,
11:1–94, 1999.

[2] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and
resource-bounded practical reasoning. Computational
Intelligence, 4, 1988.

[3] R. E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Comput. Surveys,
24(3):293–318, 1992.

[4] J. R. Burch, E. M. Clarke, D. E. Long, K. L. Mcmillan, and
D. L. Dill. Symbolic model checking for sequential circuit
verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 13:401–424, 1994.

[5] C. Burnett, D. Masato, M. McCallum, T. J. Norman,
J. Giampapa, M. J. Kollingbaum, and K. Sycara. Agent
support for mission planning under policy constraints. In
Proceedings of the Second Annual Conference of the ITA,
Imperial College, London, 2008.

[6] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak,
strong, and strong cyclic planning via symbolic model
checking. Artificial Intelligence, 147(1-2):35–84, 2003.

[7] P. Cohen and H. Levesque. Intention is choice with
commitment. Artficial Intelligence, 42:213–261, 1990.

[8] P. Cohen and H. Levesque. Teamwork. Nous, 25(4), 1991.
[9] O. Coudert and J. C. Madre. The implicit set paradigm: a

new approach to finite state system verification. Formal
Methods in System Design, 6(2):133–145, 1995.

[10] M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein.
Cooperation without communication. In Proceedings of the
Fifth National Conference on Artificial Intelligence,
Philadelphia, PA, 1986.

[11] B. Grosz and S. Kraus. The evolution of sharedplans. In
A. Rao and M. Wooldridge, editors, Foundations and
Theories of Rational Agency. Kluwer, 2003.

[12] S. Parsons and P. McBurney. Argumentation-based dialogues
for agent coordination. Group Decision and Negotiation,
12(5), 2003.

[13] S. Parsons, S. Poltrock, H. Bowyer, and Y. Tang. Analysis of
a recorded team coordination dialogue. In Proceedings of the
Second Annual Conference of the ITA, Imperial College,
London, 2008.

[14] C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A
framework for argumentation-based negotiations. In M. P.
Singh, A. Rao, and M. J. Wooldridge, editors, Intelligent
Agents IV, pages 177–192. Springer Verlag, Berlin,
Germany, 1998.

[15] K. Sycara, M. Paolucci, J. Giampapa, and M. van Velsen.
The RETSINA multiagent infrastructure. Journal of
Autonomous Agents and Multiagent Systems, 7(1), 2003.

[16] K. Sycara and G. Sukthankar. Literature review of teamwork.
Technical Report CMU-RI-TR-06-50, Carnegie Mellon
University, November 2006.

[17] M. Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research, 7, 1997.

[18] Y. Tang and S. Parsons. Argumentation-based dialogues for
deliberation. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 552–559, New York, NY, USA, 2005. ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

